Efficient Unsupervised Clustering through Intelligent Optimization
نویسندگان
چکیده
A novel methodology for unsupervised data clustering based on Evolutionary Computation, named “Intelligent Unsupervised Clustering” (IUC) is introduced. IUC searches for the “optimal clusters’ representatives” using Evolutionary Algorithms (EAs) and utilising a Window Density Function (WDF) as an objective function. EAs ensure that the representative is posed in a region of points of high density. IUC aims in finding a highly dense hyperrectangle around the cluster’s representative, that captures a part of cluster. Therefore, IUC uses a windowing technique and gradually enlarges a window, which is centered on the best individual generated from the EA. This process continues until the increase of the value of WDF does not change “drastically”. The whole process is repeated on the unclustered data, until all the clusters are discovered. The quality of clustering, delivered by the IUC, is compared with well-known clustering algorithms and the experimental results illustrate its efficiency and accuracy.
منابع مشابه
A Self-organizing Multi-agent System for Adaptive Continuous Unsupervised Learning in Complex Uncertain Environments
Introduction. Continuous learning and online decisionmaking in complex dynamic environments under conditions of uncertainty and limited computational recourses represent one of the most challenging problems for developing robust intelligent systems. The existing task of unsupervised clustering in statistical learning requires the maximizing (or minimizing) of a certain similarity-based objectiv...
متن کاملAn Overview of Unsupervised and Semi-Supervised Fuzzy Kernel Clustering
For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Kernel-based clustering has proven to be an effective approach to partition such data. In this paper, we provide an overview of several fuzzy kernel clustering algorithms. We focus on methods that optimize an fuzzy C-mean-ty...
متن کاملHybrid Exponential Particle Swarm Optimization K-means Algorithm for Efficient Image Segmentation
The introduction of unsupervised learning techniques like K-means inside the domain of Image Processing plays a vital role in Image Segmentation. The hybridization of this Algorithm by using Swarm Intelligent techniques further more improves the efficiency. Various works on hybridization of Particle Swarm Optimization (PSO) with K-means have been proposed and are found to be efficient in Image ...
متن کاملElectrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf
This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...
متن کاملAn Efficient Hybrid Evolutionary Algorithm for Cluster Analysis
Clustering problems appear in a wide range of unsupervised classification applications such as pattern recognition, vector quantization, data mining and knowledge discovery. The k-means algorithm is one of the most widely used clustering techniques. Unfortunately, k-means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is qui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009